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ABSTRACT: NOAA has created a global reanalysis dataset, intended primarily for initialization of reforecasts for its
Global Ensemble Forecast System, version 12 (GEFSv12), which provides ensemble forecasts out to 135-days lead time.
The reanalysis covers the period 2000–19. It assimilates most of the observations that were assimilated into the operational
data assimilation system used for initializing global predictions. These include a variety of conventional data, infrared and
microwave radiances, global positioning system radio occultations, and more. The reanalysis quality is generally superior
to that from NOAA’s previous-generation Climate Forecast System Reanalysis (CFSR), demonstrated in the fit of short-
term forecasts to the observations and in the skill of 5-day deterministic forecasts initialized from CFSR versus GEFSv12.
Skills of reforecasts initialized from the new reanalyses are similar but slightly lower than skills initialized from a preopera-
tional version of the real-time data assimilation system conducted at the higher, operational resolution. Control member
reanalysis data on vertical pressure levels are made publicly available.
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1. Introduction

The Global Ensemble Forecast System (GEFS) is one of
several prediction systems maintained by the U.S. National
Weather Service (NWS). It supports medium-range weather
and subseasonal to seasonal forecasting. The newest version
12 of the GEFS (GEFSv12 hereinafter) produces 31-member
ensemble forecasts. The forecasts initialized at 0000 UTC are
generated to 135-days lead time, and the forecasts initialized
at 0600, 1200, and 1800 UTC are generated to 116-days lead
time. The GEFSv12 system configuration and performance
are documented in a companion article (Zhou et al. 2021,
manuscript submitted toWea. Forecasting). Like other predic-
tion systems in the NWS, this system is typically updated
every several years.

As current-generation ensemble guidance is limited by
systematic errors including resolution limitations, errors in
the mean state, and errors in the ensemble spread (standard
deviation about the mean), products from the GEFS are
commonly statistically postprocessed. A time series of past
ensemble forecasts and coincident observations/analyses are
used to estimate the systematic errors and adjust the real-
time forecast, improving skill and reliability (Vannitsem

et al. 2018). Statistical postprocessing can also filter the pre-
dictable signal from the meteorological noise due to chaotic
error growth and sampling variability due to finite ensemble
size. When used in combination with higher-resolution anal-
yses, statistical postprocessing of ensemble forecasts can
also provide a downscaling related to the modulation of
weather by physiographic features (Hamill and Whitaker
2006).

For infrequent events and longer-lead forecasts where skill
is marginal, the statistical postprocessing is greatly aided from
a long training dataset of reforecasts, i.e., retrospective fore-
casts using the same prediction system used to generate the
real-time forecasts (Hamill et al. 2004, 2006, 2008, 2013; Ham-
ill and Whitaker 2006; Hagedorn et al. 2008; Scheuerer and
Hamill 2015). Similarity of the bias and error characteristics
of the reforecasts and the real-time forecasts is highly desir-
able for statistical postprocessing; in this way the training data
resemble the real-time forecast data. When this similarity is
lost, statistically postprocessed product quality may suffer,
especially the postprocessing of shorter-lead forecasts (Hamill
2017). Differences in the bias of short-term real-time forecasts
versus reforecasts may occur in part because of the differing
characteristics of the initial conditions in the reanalysis versus
the real-time analysis. For this reason, initialization of refore-
casts from an archive of past operational initial states from
obsolete versions of modeling systems is unlikely to provide
the desired statistical consistency; the initial conditions will
reflect in part the systematic errors of the outdated prediction
system versions used to provide the background forecasts in
the data assimilation. Hence, if computationally feasible,
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production of a new set of retrospective analyses (reanalyses)
consistent with the operational system is highly desirable for
reforecast initialization.

Many organizations across the globe have created global,
multidecadal reanalyses. These are retrospective gridded
analyses of the state of the atmosphere (and sometimes
other state components such as the land, ocean, and sea
ice), commonly produced with a cycled data assimilation
system leveraging a prior background forecast updated to
the newly available observations. Global reanalyses have
been provided by the Copernicus Climate Service/European
Centre for Medium-Range Weather Forecasts (ECMWF;
Uppala et al. 2005; Dee et al. 2011; Laloyaux et al. 2018;
Hersbach et al. 2020), the Japan Meteorological Agency
(Kobayashi et al. 2015; Harada et al. 2016), the National
Aeronautics and Space Administration (NASA; Rienecker
et al. 2011; Gelaro et al. 2017), the National Centers for
Environmental Prediction (NCEP) and the National Center
for Atmospheric Research (NCAR; Kalnay et al. 1996), and
the NCEP–Department of Energy (Kanamitsu et al. 2002).
Several have been generated by organizations within the
National Oceanic and Atmospheric Administration, includ-
ing the Climate Forecast System Reanalysis (CFSR; Saha
et al. 2010) and several versions of the Twentieth Century
Reanalysis (20CR; Compo et al. 2011; Slivinski et al. 2019).
Most of these reanalyses, such as Copernicus/ECMWF’s
“ERA5,” are intended primarily for weather and climate
monitoring and coupled state estimation, and their design
and choice of observations to assimilate emphasizes this.
ERA5, for example, creates a near-surface temperature
analysis using 2-m temperature observations alongside the
full 3D atmospheric analysis. This temperature analysis has
many applications, but it is used only indirectly in the initial-
ization of ECMWF’s medium-range forecasts (to affect the
soil-state estimate).

The main purpose of the reanalysis discussed in this paper,
the reanalysis for the GEFSv12 is reforecast initialization. The
GEFSv12 reanalysis was designed so that its initial conditions
will be consistent with the operational data assimilation sys-
tem [the data assimilation system for the Global Forecast Sys-
tem, version 16 (GFSv16)] used to initialize the real-time
GEFSv12 ensemble predictions, to the extent practical. If a
user seeks a reanalysis for other applications such as climate
monitoring or evaluation over a longer time than the 2000–19
period covered by GEFSv12, they may be better served by
other reanalyses such as ERA5 or 20CR or MERRA-2,
depending on the application and the length of record
needed. The GEFSv12 reanalysis is an atmosphere-only rean-
alysis, for reasons discussed later, including computational
expense.

While designed to facilitate GEFSv12 reforecast initializa-
tion for statistical postprocessing, we envision this reanalysis
having several other applications. For example, suppose in
the coming years that developers will need to initialize experi-
mental ensemble forecasts for high-impact events such as
Hurricane Katrina (2005) or Sandy (2012). The GEFSv12
reanalysis will be a useful initialization dataset of choice for
the next several years of retrospective uncoupled forecast

experiments for the GEFS and its deterministic counterpart,
the GFS. The reanalysis will provide suitable initial conditions
consistent with the underlying prediction system, and the
reforecasts will provide a forecast performance baseline.
Eventually the statistical character of the real-time initial con-
ditions will change, be it due to more realistic couplings
between land/ocean/atmosphere/ice, or prediction-system
improvements that alter the background bias (Hamill 2017),
or assimilation system improvements, or more observations.
Further, reanalyses of the coupled state may be necessary to
initialize next-generation coupled-model reforecasts. At this
future point, another reanalysis will be necessary.

As will be discussed, producing acceptable statistical con-
sistency between the GEFSv12 reanalyses and the
GEFSv12 real-time analyses (produced through truncation
of the GFSv16-based data assimilation system) was chal-
lenging. Generating a real-time analysis is itself computa-
tionally expensive when high analysis resolution and
modern data assimilation techniques are used, techniques
such as four-dimensional variational (4D-Var; Courtier
et al. 1994; Rabier et al. 2000) methods or four-dimensional
ensemble-variational analysis (4D-En-Var; Wang and Lei
2014; Kleist and Ide 2015). Even with using a reduced-reso-
lution version of the data assimilation system and with split-
ting the reanalysis production into streams (parallel cycles
processing different segments of multidecadal period), it
took an extended period of time and large computational
resources, O(1) year and O(1000) cores per stream, to gen-
erate these uncoupled reanalyses. This necessitated produc-
tion of the reanalysis before the final configuration of the
GEFSv12 and the operational data assimilation system
were finalized, leading to some slight inconsistencies
between the GEFSv12 reanalysis configuration and the
real-time GEFSv12 configuration.

This article, then, describes the GEFSv12 reanalysis system.
Diagnostics will focus on the general quality of the reanalysis
in comparison with its NOAA predecessor, the CFSR. It will
also provide some data to compare the reanalysis with con-
temporaneous real-time analyses produced for the GFS and
GEFSv12 forecast initialization.

The paper is organized as follows. Section 2 will briefly
describe the data that were assimilated to produce the reanal-
ysis. Section 3 provides a brief description of the assimilation
system, the forecast model, the ensemble prediction system,
and the land, ocean, and sea ice initialization procedures.
Section 4 describes the characteristics of the reanalysis
through diagnostics such as the fit of short-term forecasts to
observations and the accuracy of medium-range deterministic
forecasts initialized with GEFSv12 versus the preceding
CFSR. It will also provide some diagnostics of the character
of initial conditions and forecasts initialized from GEFSv12
reanalyses versus preproduction parallel simulations of the
GEFSv12, known as “retro” runs. Retro runs, like the even-
tual operational real-time GEFSv12 simulations, used initial
conditions inherited from the operational analysis system,
which used GFSv16. Section 5 reviews known issues with the
reanalysis, and section 6 describes the data storage, before
section 7 concludes.
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2. Description of the data assimilated in the
GEFSv12 reanalysis

As usual with modern-era reanalyses, a variety of observation
types were assimilated. Figure 1 shows the assimilated observa-
tion counts across the major broad categories of observation
types. In general, the observation count increases with time. To
simplify the data processing, it was decided to leverage the obser-
vational data that had already been preprocessed to generate
other previous reanalyses. Hence, before 1 March 2011, observa-
tions collected for input to the CFSR reanalysis (Saha et al. 2010)
were used. The reader is referred to this publication for a review
of these data. After this date, observations from the operational
data stream were used. As can be seen in Fig. 1, there is no radi-
cal jump in observation count before versus after this date, nor
would we expect any change in observation quality.

Figure 2 provides a more detailed description of the satellite
observations that were assimilated from particular satellites,
including general categories and the start and end dates of their
assimilation. More details on particular channels that were
assimilated are provided in Table S1 of the online supplemental
material. In general, the microwave and infrared (IR) radiances
were assimilated from a number of geostationary and polar-
orbiting satellites from the United States and Europe.

Satellite radiance data now provide the majority of the obser-
vations assimilated and have the greatest impact on the reanaly-
sis quality (Gelaro et al. 2010), and the GEFSv12 reanalysis
used a large number of channels from a variety of satellites. For
ozone observations, Solar Backscatter Ultraviolet version 2
(SBUV/2) observations from NOAA satellites were used for
ozone profile and Ozone Monitoring Instrument (OMI) Aura
for total ozone observations (see Table S2 of the online supple-
mental material for details). Variational quality control was also
used. For this reanalysis, a newer variational bias correction was
used (Zhu et al. 2014) that replaced the previous version
(Derber and Wu 1998) used in CFSR production. All-sky
microwave radiances (Zhu et al. 2016, 2019) were also assimi-
lated in the GEFSv12 reanalysis but not in the CFSR.

One observational data source was problematic, namely,
the velocity–azimuth display (VAD; Browning and Wexler
1968; Lee et al. 2014) winds. While the reanalyses were being
computed, we discovered that there was insufficient quality
control of these data in earlier streams, and sometimes the
low-level winds were contaminated by bird migrations. We
did not have the computational capacity or time to restart the
computations from the beginning of the cycles. Accordingly,
when discovered, assimilation of these wind observations was
turned off. For the 1999 stream, VAD data were not assimi-
lated after 0000 UTC 21 February 2001. For the 2003 stream,
VAD data were not assimilated after 1800 UTC 6 January
2005. For the 2007 stream, VAD data were not assimilated
after 1800 UTC 27 November 2008. For other streams, QC
was deemed acceptable, and their assimilation was continued.

3. Data assimilation and prediction system

This section describes the reanalysis procedure used for
reforecast initialization and a high-level description of the

underlying prediction system used to produce the background
forecasts in the cycled reanalysis system. While the GEFSv12
reanalysis inherits many characteristics of the GFS real-time
analysis system that initializes the real-time GEFSv12 ensem-
ble forecasts, the reanalysis system differs somewhat from the
real-time analysis system, and from the previous-generation
reanalysis, CFSR, with changes described below.

Table 1 summarizes the major differences between the CFSR
and the GEFSv12 reanalysis systems. The most significant
changes included use of a new atmospheric dynamical core to
provide background forecasts, discussed in section 3a below.
Another major difference was that the GEFSv12 reanalyses
excluded the generation of accompanying three-dimensional
ocean reanalyses for weakly coupled forecast initialization.
Instead, previously produced time series of optimal interpolation
(OI) sea surface temperature (SST) analyses provided the ocean
boundary condition for the reanalyses. This simplification was
made in part because as the GEFSv12 real-time forecasts and
reforecasts extend to 135-days lead time, changes in the ocean
state were smaller in magnitude during this first month than
they were for the seasonal forecasts produced by the previous
Climate Forecast System version 2 (CFSv2). How SSTs evolve
in the GEFSv12 reforecasts will be discussed in the accompany-
ing article on the GEFS forecast and reforecast procedure
(Zhou et al. 2021, manuscript submitted to Wea. Forecasting;
Guan et al. 2021).

The GEFSv12 reanalyses were conducted in parallel
streams of five or more years in length, starting in 1999, 2003,
2007, 2011, and 2015. As soil moisture is quite sensitive to its
initialization and takes a long period to stabilize, the first year
of each stream was discarded. Hence the 1999 stream pro-
vides the reanalysis initial conditions during 2000–03, and the
2003 stream provides them during 2004–08, and so forth (Rie-
necker et al. 2011). An examination of the time-mean soil
moisture for three regions with strong land–atmosphere cou-
pling (Koster et al. 2004) are shown in Fig. 3. These three
regions are the U.S. Southern Great Plains, northern equato-
rial Africa, and India. The time- and domain-mean soil mois-
tures in these three areas do not exhibit a temporal
discontinuity between stream boundaries (left column). Simi-
larly, scatterplots of beginning-of-stream versus end-of-stream
soil moisture at each grid point in the three domains are
shown in the right-hand column, with extremely high correla-
tion and little sign of bias. From this we infer that the separa-
tion of the analysis procedure into streams appears to provide
a legitimate way to parallelize the reanalysis productions with-
out degrading near-surface analysis quality.

a. Atmospheric dynamical core and physical parameterization
suite used for background forecasts

The “FV3” dynamical core (Lin 2004; Putman and Lin
2007) is used in both the deterministic GFS and in this version
12 of the GEFS that was used as the background forecast
model in the cycled data assimilation. Predictions using this
dynamical core were much less diffusive, containing more
small-scale variability relative to the previous spectral dynam-
ical core. The FV3 dynamical core is also capable of cloud-
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FIG. 1. Assimilated observation counts for major categories of observation types.
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resolving simulations when used at higher resolutions
(Putman and Lin 2007). In the FV3-based GFS and GEFS,
grid spacings are denoted with a “CZZZ” notation, denoting
that there are ZZZ 3 ZZZ grid points across each of the six
faces on the cube upon which Earth’s spheroidal shape is pro-
jected. For the C384 grid spacing chosen for the GEFSv12
reanalysis, this would indicate that there are 384 3 384 grid
points around a latitude circle, or an effective grid spacing of
approximately 0.23°. Vertical levels are shown in Fig. 4.

The parameterization suite used in conjunction with the
FV3 dynamical core to produce the background forecasts was
largely the same as that used in the GFS, version 15. Basic
details on the parameterization suite, with associated referen-
ces, can be found at https://dtcenter.ucar.edu/GMTB/v3.0/sci_
doc/GFS_v15_page.html and https://www.emc.ncep.noaa.gov/
emc/pages/numerical_forecast_systems/gefs_v12.php.

b. Data assimilation procedure

We now consider the assimilation procedure, which gener-
ally reflects data assimilation system improvements incorpo-
rated into GFSv15.1 and GFSv15.2, as well as some of the
improvements included in GFSv16. Ideally, the exact same
assimilation procedure, types of observations, and prediction
system would be used in the real-time and reanalysis systems.
Because of the computational expense of producing multide-
cadal ensemble reanalyses, it was decided that the control
reanalysis around which perturbed members are recentered
would use a background forecast at half the resolution of the

real-time operational assimilation system for the GFS and
GEFSv12, reanalysis C384 versus real-time C768. However,
both the reanalysis’s and the real-time control’s forecast
minus observation departures were computed at C384. Simi-
larly, the ensemble providing background-error covariances
was computed at C128 in the reanalysis versus C384 in the
operational system. The impacts of resolution differences
(and some other changes) will be examined in section 4,
where diagnostics of the assimilation and forecast quality are
examined.

Analyses were produced four times daily at 0000, 0600,
1200, at 1800 UTC, although the reforecasts were initialized
at the end of the incremental analysis update window 3 h after
the synoptic time. Figure 5 is a schematic illustrating the anal-
ysis workflow prior to application of the incremental analysis
update. The data assimilation procedure used in the GEFSv12
reanalysis is a hybrid 4D-En-Var (Kleist and Ide 2015; Kleist
et al. 2018). It reflects the improvements implemented for
GFSv16 listed in https://www.weather.gov/media/notification/
pdf2/ scn21-20_gfsv16.0_aac.pdf, except for the inclusion of
interchannel correlated observation errors for hyperspectral
radiances and the use of updated land states from an offline
run forced by observed precipitation. The 4D-En-Var was
used to update the ensemble mean, while a local ensemble
transform Kalman filter (LETKF) variant of the EnKF was
used to update the 80 ensemble perturbations (Lei et al.
2018). The GEFSv12 reanalysis system also used a 4D incre-
mental analysis update procedure (4D-IAU; Lei and

FIG. 2. Periods during which observations of various types were assimilated from satellite systems. The vertical black line indicates when
the observation data switched from the data previously stored from the CFSR to the operational analysis data stream. Explanations of
acronyms are provided in Table S1 of the online supplemental material.
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Whitaker 2016) to reduce gravity wave noise, and it used the
linearized forward operator to compute observation prior
ensemble perturbations (Shlyaeva and Whitaker 2018).

After generating the reanalyses, we discovered a bug in the
way snow was updated (see section 3d). To partially correct
for this, we subsequently “replayed” (Orbe et al. 2017, section
2.1) the C384 deterministic solution to the C128 ensemble-
mean analysis (after recentering the around the hybrid 4D-
En-Var analysis) to downscale the C128 analysis to C384 reso-
lution, while updating the land surface states using the correct
snow analysis at each analysis time. The replay procedure uti-
lized the same 4D-IAU process used in the data assimilation
cycle. The only difference is that instead of recomputing the
analysis increments by rerunning the hybrid 4D-En-Var data
assimilation, it used the previously generated C128 analysis to
compute the increments used to constrain the higher resolu-
tion model trajectory. This C384 “replay” analysis was used as
the ensemble-mean state used to initialize the C384 reforecast
ensemble (after superimposing the upscaled C128 ensemble
perturbations).

For the 4D-IAU procedure, analyses were produced every
3 h within the 6-h assimilation window (at the beginning,

middle, and end of the window). The model was restarted
from the beginning of the assimilation window and forced by
analysis increments interpolated in time to the model time
step from the 3-hourly fields.

Observation variational quality control and bias correction
was performed by the operational variational Global Statisti-
cal Interpolation (GSI) code and was configured as in the
operational GFS as of 2015. An aircraft temperature varia-
tional bias correction was employed in the reanalysis (Zhu
et al. 2015) that was not used in the CFSR. The GEFSv12
reanalysis assimilated global positioning system radio occulta-
tions (GPSRO) bending angle, instead of refractivity as in
CFSR (Cucurull et al. 2013).

c. Stochastic physics in the cycled ensemble for data
assimilation

Model uncertainty in the background ensemble and in the
4D-IAU corrector segment was parameterized by a suite of
schemes that consisted of stochastically perturbed physics ten-
dencies (SPPT; Palmer et al. 2009), stochastic kinetic energy
backscatter (SKEB; Shutts 2005; Berner et al. 2009) and sto-
chastic specific humidity perturbations in the boundary layer

TABLE 1. A synthesis of the major differences between the CFSR and GEFSv12 reanalyses.

Aspect changed CFSR configuration GEFSv12 configuration

Period of record 1978–current 2000–20
Atmospheric dynamical core and control

forecast grid spacing
Spectral, T382L64 (∼38-km grid) FV3 (Lin 2004; Putman and Lin 2007);

C384L64 (∼25-km grid)
Microphysical parameterization Zhao–Carr (Zhao and Carr 1997) GFDL (Phillips and Donner 2006; Zhou

et al. 2019)
Other parameterizations Saha et al. (2010) GFSv15 (2020)
Atmospheric data assimilation method 3D-Var (Parrish and Derber 1992; Kleist

et al. 2009)
Hybrid 4D En-Var with 4D-IAU

Ensemble usage in data assimilation None 80-member EnKF at C128L64 (∼75 km)
to provide background-error
covariances

Ensemble stochastic physics None (single control member for data
assimilation)

Stochastically perturbed physical
tendencies (SPPT), stochastic
boundary layer relative humidity
(SHUM), and stochastic kinetic
energy backscatter (SKEB) (this
paper)

Snow updates “SNODEP” (Kopp and Kiess 1996)
before 1997, NESDIS Interactive
Multisensor Snow and Ice Mapping
System (IMS; Helfrich et al. 2007)
thereafter; updated four times daily

NESDIS IMS (Helfrich et al. 2007);
updated only at 0000 UTC; otherwise,
climatology for the other three cycles
(a bug)

Land surface analysis Separate land surface analysis with
analyzed forcings (Saha et al. 2010)

Land surface forcings directly from
short-term forecasts

Ocean analysis SST via OI (Reynolds et al. 2002); rest
of ocean state with 3D-Var using
MOM4 ocean and weak coupling

SST via OI (Reynolds et al. 2002); no
weak coupling in cycled DA and no
full ocean analysis

Tropical cyclone processing Vortex relocation to observed position
(Liu et al. 1999)

Direct assimilation of central pressure;
no relocation

Satellite bias correction Variational (Derber and Wu 1998) Variational (Zhu et al. 2014)
All-sky radiance assimilation None Zhu et al. (2016, 2019)
GPSRO assimilation Refractivity Bending angle
Variational correction of aircraft

temperature bias
None Zhu et al. (2015)
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(SHUM). The details of the GEFS implementation of SPPT
and SKEB are outlined in Zhou et al. (2021, manuscript sub-
mitted toWea. Forecasting).

There were several differences in the model uncertainty
parameterizations used in the cycled data assimilation for
reanalysis and real-time analysis relative to what were used in
the GEFSv12 reforecasts and real-time forecasts. The first dif-
ference is that a single spatial and time scale for the random
pattern was used in SPPT for the cycled ensemble data assimi-
lation. The background ensemble used an e-folding horizontal
length scale of 500 km, an e-folding time scale of 6 h, and an
amplitude of 0.8, whereas the GEFSv12 predictions used mul-
tiple length and time scales similar to the ECMWF seasonal
forecast system (Molteni et al. 2011; Zhou et al. 2021, manu-
script submitted to Wea. Forecasting). The larger random pat-
terns with their longer growth time scales are relevant for
medium-range to S2S forecasts; however, these grow slowly
and thus had negligible impact on the short-range background
forecasts used in cycled data assimilation.

In several other respects, the application of the ECMWF
SPPT method was changed. In early tests to integrate the
SPPT to work with the FV3-based GFS, frequent model
crashes occurred. These were traced to the interaction of the

planetary boundary layer (PBL) scheme and the mountain-
blocking scheme. Both of these schemes produced very large
momentum tendencies in regions of mountain blocking. When
perturbed, they often produced unphysical oscillations that
cause numerical stability issues. The solution chosen was to
apply SPPT tendencies only above a dividing streamline, which
was defined as the level in the atmosphere at which the flow
below was blocked due to orography; the SPPT scheme was not
active in the portion of the atmosphere that was considered
blocked. Another issue with the implementation of SPPT was
a wet precipitation bias globally. The perturbed moisture
removed by the microphysics was not reflected in the precipita-
tion at the surface. The solution was to perturb the surface pre-
cipitation with the same random number to ensure physical
consistency with the perturbed tendencies in the atmosphere.

The SKEB for the cycled background ensemble was the
same as GEFSv12, but here we used a single length-scale and
time-scale amplitude of 500 km and 6 h, respectively.

In addition, another stochastic scheme was active for the
cycled background ensemble that was not used in GEFSv12.
Specific humidity tendency perturbations were applied to the
lower layers of the model each physics time step. The pertur-
bations rapidly decreased in amplitude above the surface,

FIG. 3. Time series of mean volumetric soil moisture in overlapping streams for three areas with strong land–atmosphere coupling: (a)
U.S. Great Plains, (c) northern equatorial Africa, and (e) India. (b),(d),(f) Also plotted are scatterplots of the soil moistures in each region
between the last day of one stream and the first day of the next stream; each dot represents a separate grid point at one of the four stream
boundaries.
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with an e-folding scale of 0.2 in the vertical coordinates
(sigma). Thus, if the surface pressure was 1000 hPa, the
SHUM tendency perturbation at 800 hPa would be ∼36.7%
of that at the surface. The humidity perturbations were
intended to account for unrepresented variability in small-
scale convective triggering features such as gust fronts, cold
pools, and subgrid humidity variability. This stochastic
scheme was inspired by Tompkins and Berner (2008), which
used random samples of specific humidity distributions

provided by the cloud scheme in the convection scheme. As
opposed to the Tompkins and Berner method, which had
ensembles of humidity profiles available, in the member-by-
member processing of each background ensemble forecast
only the single humidity column profile was available at a
given grid point with this model’s parameterization schemes.
Hence, our approximation to their algorithm was to perturb
the specific humidity with a random value, which is on the
order of 0.1% per time step. Like SPPT and SKEB, the per-
turbations were correlated in space and time with an e-folding
time scale of 6 h and spatial scale of 500 km.

d. Land, ocean, and sea ice initialization

We produced an atmosphere-only reanalysis and inherited
analyses of other state components from other systems. Previ-
ously generated OI (Reynolds et al. 2002), version 2, SST anal-
yses at 1=4° provided the ocean state. This differs from the
GEFSv12 real-time SST initialization procedure, known as
near sea surface temperature (NSST; Minnett et al. 2019). As
there can be strong diurnal variations in the ocean skin tem-
perature, especially under sunny conditions and weak winds,
the NSST includes some simplified dynamics of vertical mixing
in the top ocean layers and its variation with atmospheric forc-
ings. The background ocean SST state predicted by NSST is
updated to available in situ and satellite observations. Use of
the NSST algorithm was not included in the GEFSv12 reanaly-
sis because its use resulted in excessive SST bias in climatologi-
cally cloudy regions during the early years of the reanalysis
(not shown), when there were fewer in situ SST observations
and infrequent IR views of the ocean. Note that NSST is
turned on in the reforecasts and real-time GEFSv12 forecasts.

There were some systematic differences between SSTs from
the OI and from NSST. Figure 6 shows the mean skin tempera-
ture at 0000 UTC from the preproduction parallel SST analyses
minus the skin temperature in the reanalysis during a period
from late 2017 to late 2019. Over the ocean, the skin-tempera-
ture reanalysis was the OI SST analysis. Generally, mean differ-
ences were small over the oceans, though differences in excess of 1
C were found in higher-latitude oceans, with a cold bias of NSST
relative to OI. The lack of major differences over the tropics sug-
gests that surface-based convection should trigger similarly when
initialized from reanalyses as in the real-time production system.
This is probably of greater consequence to representation of the
general circulation than the midlatitude differences.

FIG. 4. Vertical levels for the cycled data assimilation and forecast
model used in this reanalysis for a surface pressure of 1000 hPa,
plotted as (a) logarithmic in pressure and (b) linear in pressure.

FIG. 5. Cycled data assimilation data and process flow used in the GEFSv12 reanalysis. Cycled lower-resolution
LETKF analyses were maintained alongside the higher-resolution control En-Var analysis. Background cycled
LETKF forecasts informed the background-error covariance model in the hybrid En-Var. LETKF analyses were
recentered around the En-Var control. The LETKF analyses were computed at ensemble resolution C128, lower than
operations by a factor of 3. The control analysis was computed at C384.
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Initialization of snow and ice were designed to be as
described in Saha et al. (2010). One known bug in this reanal-
ysis was that the cycled DA erroneously inserted climatologi-
cal snow amounts for three of the update cycles each day
(0000, 0600, and 1200 UTC), whereas the actual snow analysis
was inserted only at 1800 UTC. The previously described
replay procedure that was used to regenerate the control
C384 analysis was also applied ex post facto to adjust the
reanalysis states to the correct snow analyses at all four synop-
tic times.

There was no direct data assimilation of top-level soil mois-
ture observations or 2-m temperature/humidity in this reanal-
ysis as there was in other operational prediction facilities
(e.g., ECMWF 2019), although related techniques are in
development within NOAA. Further, unlike the real-time
GEFSv12, there was no insertion of a standalone soil-state

analysis from the Global Land Data Assimilation System
(GLDAS; Rodell et al. 2004; Meng et al. 2012), as multideca-
dal GLDAS reanalyses were not available at the time of
GEFSv12 reanalysis production. Instead, the background
forecasts provided precipitation, temperature, and radiative
forcings to the underlying cycled land model, but there was
no explicit soil-state update based on atmospheric values.
Deeper-soil moisture (layers 2–4, below 10 cm) were relaxed
to externally specified climatology with a time scale of
60 days, with the climatology specified from an older version
of the GLDAS system. The choice of 60 days was informed
by experience (F. Yang 2021, personal communication).

There were some larger skin-temperature differences over
land between the reanalysis and the preproduction parallel.
In regions with more varied terrain, some of these may repre-
sent the differences in the resolution of the computational

FIG. 6. Differences between 0000 UTC analyzed skin temperatures, preproduction parallel analysis minus reanalysis,
(a) for the period 1 Dec 2017–30 Nov 2019 and for a subset of the domain for dates within this period and for the
months (b) November–April and (c) May–October.
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grids, which was twice as high in the preproduction parallel
(C768) than in the reanalysis (C384), with more terrain detail
in the former. Still, areas such as the Himalayan plateau had
mean temperatures warmer by several degrees C in the pre-
production parallel analyses. Figures 6b and 6c show that the
differences around China were persistent from cool to warm
season and thus were unlikely due only to the previously men-
tioned bug related to the snow initialization once per day.
Perhaps this region was particularly bias prone, and the inser-
tion of GLDAS states in the preproduction parallel raised
these surface temperatures relative to the reanalysis without
GLDAS. Understanding the ultimate sources of these differ-
ences is left for possible future research.

4. Statistical characteristics of the reanalysis and
scout runs

a. Conservation properties and the quasi-biennial oscillation

Figure 7a shows the time series of the analyzed global-
mean dry surface pressure, which should be constant. There is
an option for a weak constraint on dry mass during the data
assimilation to enforce constancy, but it was inadvertently
turned off for this reanalysis. Hence the dry surface pressure
reflects random and systematic changes to the thermodynamic
structure from the assimilation of observations. Analyzed

pressure exhibits two nonmeteorological jumps, the first around
13–15 July 2006 and the second around 11–13 October 2009.
The first of the pressure jumps coincides with the advent of the
assimilation of the more-dense GPSRO (Kursinski et al. 1997;
Anthes et al. 2008). When these unbiased GPSRO observations
began to be assimilated in large numbers, they provided an
effective anchoring of the microwave radiance data (Cucurull
et al. 2014), and these radiance bias corrections changed notably
over a short period. The result was that the analyzed thermody-
namic structure of the atmosphere changed, and with it the inte-
grated surface pressure. An in-depth examination of the second
pressure jump did not reveal any such conclusive cause.1

The water cycle in the GEFSv12 reanalysis was not perfectly
closed. Figures 7b and 7c show time series of globally averaged
precipitation and evaporation and their difference. This makes
the water-cycle balance comparable to the MERRA reanalysis
but worse than in MERRA-2. The MERRA-2 reanalysis used
extra algorithmic adjustments to ensure near closure of the
water cycle (Bosilovich et al. 2017, Fig. 1).

Basic characteristics of the analysis of the quasi-biennial
oscillation (QBO; Coy et al. 2016; Pascoe et al. 2005) are
shown in Fig. 8. The QBO diagnostics are based on the
monthly and zonally averaged reanalysis u-wind component
from 210°S to 10°N. The annual cycle was first removed by
subtraction of the 20-yr average of each month. Figure 8a pro-
vides the winds as a function of pressure (ordinate) and date
(abscissa). Filtering was then performed with Fourier analysis,
retaining only the first–nineteenth harmonics to retain vari-
ability longer than a year (periods of 12.6–240 months). The
filtered data are presented in Fig. 8b. The time versus pressure
series closely resembles those presented from other reanaly-
ses (e.g., Coy et al. 2016, Fig. 5). The coarser stratospheric res-
olution in this reanalysis does not permit examination of
characteristics above 10 hPa.

b. Fit of the background forecasts to observations

One way of monitoring the quality of the reanalysis is to
display a time series of the statistics of differences between
the short-term background forecasts (interpolated or con-
verted to the observation type) and the observations. As
more observations are added and as the forecast model and
assimilation algorithms are improved from one reanalysis sys-
tem to the next, one would expect the control background
forecast to more closely fit the observations in the newer rean-
alysis system. As an example, the fit of background forecasts
to “conventional” observations (primarily rawinsondes, air-
craft, and surface and marine in situ observations) are shown
in Fig. 9 for the 800–900-hPa layer for both this reanalysis and
the previous generation reanalysis, the CFSR. Individual dots
denote weekly averaged values, and fitted curves with annual

FIG. 7. Time series of (a) dry surface pressure, (b) precipitation and
evaporation rate, and (c) precipitation minus evaporation rate.

1 We considered changes in the observation network as a cause,
but there were no significant changes at this time. While SSM/I
precipitation retrievals were turned off in the NASA reanalysis in
September of 2009, these were not assimilated in the GEFSv12
reanalysis. Diagnostics that are not shown indicate that a similar
jump in surface pressure also occurred at the same time in the
CFSR.
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cycles are also plotted. Root-mean-square errors (RMSE) in
this reanalysis were generally decreased relative to CFSR
throughout the reanalysis period, and biases were somewhat
larger than CFSR in the first decade and smaller in the second

decade. Plots for other vertical layers are shown in the online
supplemental material; for several tropospheric layers,
GEFSv12 biases were somewhat larger than CFSR although
RMSEs were generally smaller.

FIG. 8. Illustration of the monthly zonal-mean wind in the 10°S–10°N latitude band, illustrating
the QBO in this reanalysis, (a) before and (b) after filtering.

FIG. 9. (a) The 12.5-day average RMSE fit (dots) of control background forecast to conventional
data, red for GEFSv12 analysis and blue for CFSR. (b) Averages of control background forecast
bias. Colored lines in (a) are estimated with linear regression including an annual cycle, and the
lines in (b) are estimated with a Gaussian kernel smoother with a 125-day e-folding time scale.
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Similarly, bias-corrected fits of the background forecasts to
the NOAA-15 satellite’s Advanced Microwave Sounding Unit
A (AMSU-A) channel 8 are shown in Fig. 10; other channels
are shown in the online supplemental material. The different
reanalyses used different bias-correction methods (Table 1).
Channel 8 has a peak of its weighting function around 150
hPa. The RMSE fit to these observations was notably
improved relative to CFSR. In most cases, other levels and
other microwave channels provided qualitatively similar
improvement of RMSE fits, but also generally larger biases in
GEFSv12 versus CFSR. A few satellite channels had, at first
glance, had much poorer background fits to the observations
in the new reanalysis, (see Figs. S11 and S12 of the online sup-
plemental material). However, these channels assimilated
cloudy microwave radiances that the CFSR reanalysis did not
use. The cloudy radiances typically have much larger differ-
ences between background and observed. In this way, the two
reanalyses use different sets of observations, and direct com-
parisons cannot be easily performed.

The ultimate source of somewhat larger bias in many obser-
vational fits in GEFSv12 is still unknown. To meet production
deadlines, we did begin production of the reanalysis before
model physics were fully tuned, and hence it is possible that
the (less optimally tuned) GEFSv12 reanalysis system pro-
duced background forecasts with larger biases. In the absence
of many anchoring observations to help discriminate between
background and observation bias, the GEFSv12 assimilation
bias may then have been increased relative to CFSR.

c. Scout-run prediction error characteristics

Another way to evaluate the quality of the reanalysis was to
conduct deterministic predictions initialized from the reanalysis
and initialized from the reference standard, the previous gener-
ation CFSR. Accordingly, for each day during the reanalysis
period, 5-day deterministic GFS predictions were generated
from both reanalyses at C384 resolution. The two temperature
predictions were then compared with an independent reference
standard, in this case the ERA5 reanalysis (Hersbach et al.
2020). Figure 11 synthesizes the results as a function of the fore-
cast lead time (abscissa) and pressure level (ordinate). The top
rows show the time-averaged RMSE of the GEFSv12 predic-
tions minus the RMSE from the CFSR-initialized predictions;
red colors indicated where the CFSR-initialized forecasts had
lower error relative to the ERA5 reference standard, and blue
indicated where the GEFSv12 had lower errors. Forecasts from
the GEFSv12 temperature reanalyses were generally lower in
error, with the notable exception of tropical temperatures just
below the tropopause. The GEFSv12 reanalysis used the new
FV3 dynamical core as well as a new microphysics parameteri-
zation (Zhou et al. 2019). The reanalysis also fully applied
humidity observation increments in the stratosphere. In similar
testing of the preproduction cycle of GFS data assimilations
and forecasts (the retro runs), similar humidity biases were
noted, and the eventual operational GFS data assimilation con-
figuration was changed to taper the data assimilation humidity
increments in the stratosphere to zero. We assume that the
upper-tropospheric and lower stratospheric temperature biases

FIG. 10. Two-week average RMSE fit (dots) of control background forecast to the NOAA-15
polar-orbiting satellite’s AMSU-A channel 8 (peak weighting at ∼150 hPa), red for GEFSv12
analysis and blue for CFSR. Overplotted are Gaussian kernel smoother RMSEs with an e-fold-
ing correlation time scale of 125 days. Also shown are (b) background biases.
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were related to this incomplete tuning of the reanalysis system
prior to production.

The second row of Fig. 11 shows time-averaged prediction
biases from the GEFSv12 reanalysis relative to the ERA5
analyses. The third row of Fig. 11 provides similar plots but
for predictions initialized from the CFSR. Near-tropopause
temperature biases were more pronounced in the forecasts
initialized from the GEFSv12 reanalysis. Cold biases near
250 hPa increased with lead time and were especially promi-
nent in the tropics. There were also more pronounced warm

stratospheric biases in predictions from the GEFSv12 reanaly-
sis. While lower in magnitude, the increasing biases with lead
time in CFSR-initialized forecasts indicates that the bias likely
originated in the version of the FV3-based GFS forecast
model used here, not in some aspect of the data assimilation.

Did the apparently increased upper-air temperature bias in
the GEFSv12 result in forecasts with degraded accuracy? Fig-
ure 12 shows anomaly correlation (Wilks 2011, section 8.6.4)
“die-off curves” for GFS deterministic predictions of temper-
ature initialized from the GEFSv12 system (red) versus from

FIG. 11. RMSE and bias characteristics of deterministic FV3-based GFS temperature forecasts initialized from
GEFSv12 reanalysis and CFSR initial conditions relative to ERA5 reanalyses. Average differences are shown as a
function of forecast lead time (x axis) and pressure level (y axis). RMSE differences (GEFSv12 initialized minus
CFSR initialized) are for the (a) Northern Hemisphere (20°–90°N, (b) tropics (20°S–20°N), and (c) Southern
Hemisphere (90°–20°S). Biases of GEFSv12 initialized forecasts are for the (d) Northern Hemisphere, (b) tropics, and
(c) Southern Hemisphere. Also shown is bias of CFSR initialized forecasts for the (g) Northern Hemisphere,
(h) tropics, and (i) Southern Hemisphere.
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the CFSR (dashed blue) using ERA5 reanalyses for verifica-
tion. Five lines are plotted, one each representing the average
over one of the five streams. While there was some variability
in performance from one stream to the next (generally, the
lower anomaly correlations correspond to earlier streams with
sparser observational data), consistently across levels and
regions, the predictions initialized from the GEFSv12 system
were higher in anomaly correlation, especially in the tropics
despite the temperature bias. This reinforces the inferences
from fits to observations (Figs. 9, 10) that the GEFSv12 reanal-
ysis had reduced errors relative to CFSR.

d. Comparisons with preproduction parallel forecasts

In addition to the multidecadal GEFSv12 reanalyses and
the reforecasts generated from them, NOAA partners at the

Environmental Modeling Center also performed approxi-
mately two years of retrospective 31-member GEFSv12 fore-
casts initialized from the operational GFSv15 analyses. These
November 2017–October 2019 retro forecast data were pri-
marily used as a comparison with the then-operational
GEFSv11 system to ensure that the new forecast system pro-
duced forecasts of equal or greater quality.

Perturbed initial conditions for the retro runs, as with the
operational GEFSv12, used the background forecast perturba-
tions from the previous analysis cycle. The GEFSv12 configura-
tion was generally the same as that which was made
operational, at the target operational C384 resolution. The
retro forecasts form a useful baseline for comparison of the
reforecasts, which, it was hoped, would be similar in error

FIG. 12. Anomaly correlation (AC) “die off” curves of temperature computed with respect to ERA5 analyses for-
vertical levels (a)–(c) 250, (d)–(f) 500, and (g)–(i) 850 hPa. for the (left) Northern Hemisphere (20°–90°N), (center)
tropics (20°S–20°N), and (right) Southern Hemisphere (90°–20°S). Red lines provide AC averages over each stream
with GEFSv12 initialization of the FV3 GFS deterministic forecast, neglecting the first (spinup) year. Blue dashed lines
provide averages over each stream with CFSR-initialized FV3 GFS deterministic forecasts.
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characteristics. The cycled retro assimilations and forecasts did
not use a strictly unchanging model and data assimilation con-
figuration; as biases were discovered, parameter settings were
changed. In this way, it proved difficult to isolate the specific
parameter settings that may have been responsible for system-
atic differences between retro and reforecasts beyond the obvi-
ous differences in analysis resolution.

The reforecasts, as described more completely in Guan et al.
(2021), used the perturbed forecast states starting from the
end of the 9-h IAU window, that is, 3 h into the forecast. The
five members were the control and first four from the 80-
member ensemble.

Figure 13 illustrates differences in errors between global
five-member ensemble-mean reforecasts and the mean of first
five members of the retro ensemble forecasts over the ∼2-yr
period. The top row compares the mean prediction character-
istics in the absence of any verifying reanalysis, the mean retro
minus mean reforecast. As with the comparison with ERA5 in
Figs. 11d–f and 13a indicates that the reanalysis-initialized pre-
dictions had mean temperatures that were lower than those
from the retro runs near 250 hPa and that reforecast-initialized
predictions of the stratosphere were warmer. Reforecast-
initialized predictions of humidity above 200 hPa were lower
than retro-run predictions. Temperature biases, through geo-
strophic adjustment, presumably affected the wind structure
above this level. Possibly these systematic differences were
attributable to differences in the cloud microphysical parame-
terization used in the cycled reanalysis and/or the application
of a tapering of humidity increments in the stratosphere in the
retro’s cycled data assimilation. These tapering changes had
not been made to the reanalysis system at the time of the pro-
duction. Retro-run cycled assimilations and predictions were
performed later, after subsequent tuning of the microphysics
reduced biases and application of tapering.

RMS errors of near-surface temperature (Fig. 13g) and
humidity (Fig. 13h) were very similar between retro and
reforecast, suggesting that the reforecast data should provide
acceptable similarity for postprocessing. Near-surface wind
errors (Fig. 13i) were slightly larger in the reforecast, but only
by a fraction of a meter per second.

A curious feature is shown in Fig. 13i, where u-component
RMSE differences in the 200–400-hPa layer grow through day
17 but then get smaller. This can be explained by the differ-
ing lead times of forecast-error saturation. In general, refore-
cast-initialized winds at these levels had forecast errors
corresponding to an ∼12-h loss in prediction time relative to
the retro; that is, reforecast-initialized forecasts at 17-days
lead were as accurate as retro-run initialized forecasts at 17.5
days. The global saturation time scale was largely controlled
by the (shorter) value in the 30°S–30°N band we call the
“tropics” (not shown), given the large fraction of Earth’s sur-
face area in this latitude band. Thus, global reforecast predic-
tion errors were more quickly reaching a saturation error
value than retro predictions. But the retro predictions eventu-
ally began to saturate shortly thereafter as well. Despite dif-
ferent reforecast versus retro errors and biases in upper-air
fields, the differences were smaller near Earth’s surface,

which was of greater concern for most forecast applications
such as postprocessing of sensible weather variables.

Clearly there are some differences in the statistical quality
of the multidecadal reforecasts versus the 2017–19 retro runs.
The impact of these differences on statistically postprocessed
guidance was not evaluated here, for postprocessing is a
diverse area of inquiry. Different methods are commonly
used for different variables, different lead times (weather ver-
sus subseasonal), for instantaneous versus time-averaged
quantities. Let us assume that biases are similar between
reforecast and real-time guidance but that RMS errors are
larger in the reforecast. Then one would expect that training a
postprocessing method with reforecasts and then applying to
a real-time system with lower errors will result in postpro-
cessed guidance in real time that is higher in quality than
were it applied to cross-validated reforecasts, with their larger
errors. If biases are dissimilar between reforecast and real
time, then the real-time product quality may be degraded
because of the statistical inconsistency.

Another way of evaluating the relative quality of forecasts
initialized from the reanalysis and from the retro runs is with
anomaly correlation die-off curves (Fig. 14), as in Fig. 12.
Again, the verifying analyses were provided by ERA5. There
were differences in the anomaly correlations of the refore-
cast-initialized forecasts, which were slightly lower than for
the retro runs. Consistent with Fig. 13, these were larger at
higher levels and modest at lower levels. As most of the post-
processing is of surface-related variables, this suggests that
the impact of differing skills at upper levels is of less impor-
tance. An understanding of the practical effect of reforecast
skill differences is left for future research.

5. Known discrepancies between the reanalysis and the
real-time analysis

Aside from the obvious resolution differences, Table 2 syn-
thesizes what we believe to be the major discrepancies
between the configuration of the reanalysis and the real-time
forecast configuration.

6. Description of reanalysis data storage

Six-hourly control reanalyses for the 2000–19 period are
publicly available on the “emcrzdm” server; 590 variables at
0.25° were created for the synoptic times 0000, 0600, 1200,
and 1800 UTC in grib2 format. Because this server also pro-
vides operational forecast data, for some times of day, down-
load speeds may be slow. The data can be found here:

7. Conclusions

This article has described the algorithms behind and some
of the characteristics of a multidecadal global ensemble atmo-
sphere-only reanalysis covering 2000–19. It was designed for
initializing the atmospheric component of reforecasts for the
new U.S. National Weather Service Global Ensemble Fore-
cast System, version 12 (GEFSv12), described in a companion
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FIG. 13. Comparisons between mean of five-member C384 ensemble predictions initialized from the GEFSv12 rean-
alysis and the retro analysis for the period December 2017–November 2019. Data are plotted as a function of forecast
lead time (abscissa) and vertical pressure level (ordinate); RH data were not available above 100 hPa. Shown are
(a)–(c) the global-mean differences in reanalysis-initialized forecasts minus retro-initialized forecasts, (d)–(f) the retro-
run prediction global and ensemble-mean RMSE, and (g)–(i) the difference in ensemble-mean RMSE of predictions
from the reforecast minus those from the retro for (left) temperature, (center) relative humidity, and (right) u-wind
component.
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article (Guan et al. 2021). It has approximate consistency with
the operational data assimilation procedure used to initialize
the real-time GEFSv12 forecasts. Considered over many met-
rics, the reanalysis quality generally appears to be an improve-
ment relative to the previous-generation CFSR. However,
initial-condition temperature bias was often larger in
GEFSv12, especially near the tropical tropopause. We
hypothesize that this was likely due to larger GEFSv12 back-
ground forecast bias as a consequence of starting the reanaly-
sis production before the model was well tuned.

Partly because of computational expense that necessi-
tated lower reanalysis resolution and partly because the
reanalysis had to be created before the operational configu-
ration was settled, there were inconsistencies with the real-
time analysis. For one, reanalysis resolution was lower.

Also, upper-air thermodynamic variables were different
between reanalyses and real-time analyses due to less tuning
in the reanalysis with different parameterization configura-
tions, and that affected the upper-air wind analyses as well.
There were some near-surface differences, in one case due
to a bug in the updating to snow analyses, as well as to dif-
ferent real-time versus reanalysis procedures for land and
SST initialization.

We encountered significant challenges in the production of
this reanalysis that are motivating some potential changes the
next time a NOAA modern-era reanalysis is created. The
most significant problem was that reanalysis computations
had to be spread over a long period of time due to NOAA’s
supercomputers being saturated. Consequently, the reanalysis
configuration was decided roughly one year before final

FIG. 14. Anomaly correlation die-off curves with respect to ERA5 analyses for forecast temperature in the (a)–(c)
Northern Hemisphere, (d)–(f) tropics, and (g)–(i) Southern Hemisphere for (left) 250, (center) 500, and (right) 850
hPa. Reforecasts are presented in red, and retro simulations are in cyan.
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decisions were made on the real-time analysis configuration
used for GEFSv12 initialization. Perhaps projects like reanal-
yses and the accompanying reforecasts are more appropriate
for cloud computing, where their computations can be
delayed until just before a model implementation and then
performed on many processors over a short period of time.
With the short production period, a consistent system configu-
ration can be used for both reanalysis and the real-time sys-
tem. The potential downside of this approach is the expense
of cloud computing. However, when factoring in all the com-
parative costs of NOAA-owned versus cloud high-perfor-
mance computing, the costs may be more comparable,
especially if cloud computations are performed with less
expensive “spot” instances, computational capacity that is
unused by others.

Data preparation and quality control is always a challenge
with reanalyses. While we leveraged archived NOAA obser-
vational data used in a previous reanalysis, the international
sharing of reanalysis observational datasets would have many
desirable consequences. With more people involved in data
preparation and quality control, each organization would
have greater confidence in the fidelity of these data. Also,
were standardized observation datasets used by multiple
organizations, then reanalysis comparisons will become more
straightforward, and differences in quality can be attributed
to model and assimilation system design rather than to obser-
vation dataset differences.

Inconsistencies between the reanalysis versus real-time analy-
sis also occurred near Earth’s surface. Consistent Global Land
Data Assimilation System (GLDAS) reanalysis states were not
available at the time of reanalysis production, and the real-time
sea surface temperature initialization procedure did not per-
form acceptably in the more data-sparse environment early in
the reanalysis period. Hence, the development of consistent,
coupled ocean–atmosphere data assimilation procedures shared
between the reanalysis and the real-time system are a priority,
if not a panacea for all issues. Similarly, improvement of land
data assimilation procedures so that they can be implemented
consistently between reanalysis and real-time operations are

also desirable. NOAA is currently working on procedures that
improve on GLDAS procedures by using 2-m temperature and
humidity observations and other data to make increments to
the soil state (Draper 2021). When implemented across applica-
tions, this should both improve the consistency and make future
reanalyses more widely useful, such as for climate monitoring
applications in addition to reforecast initialization.

For brevity, this article did not include extensive compari-
sons with other reanalyses such as ERA5. Such a comparison
is left as a subject for possible future research.
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